资金结构与融资成本:资金结构为 30%权益资金与 70%债务融资,贷款利 率为 4.50%,还款年限 15 年;
利用小时数:项目全年利用小时数假设中枢为 2200 小时;
装机成本构成:除风机以外的其他成本为 3500 元/千瓦,风机为可变成本, 风机成本假设中枢为 2500 元/千瓦;
上网电价:采用全国平均燃煤基准电价(0.367 元/千瓦时,含增值税);

税率:增值税税率 13%,所得税率 15%,所得税享受“三免三减半”政 策;
税金及附加:每年营业收入的 5%
折旧年限以及项目残值:折旧年限假设 20 年、项目残值率假设为 10%;
陆上风电已进入项目收益率足以支撑运营商进行稳定开发拓展的新阶段。就单 体情况而言,装机成本降低与利用效率企稳上升一定程度上抵消电价退坡带来的 不利影响,提振项目收益率。此外,伴随项目运营阶段的推进,对于初期资本开 支带来的债务融资陆续进行还本付息,项目 ROE 总体呈现逐期爬坡的态势。因 运营期付现成本较低,运营商现金流相对充裕,且在平价项目中体现得愈发明 显,进而可支撑其进行新项目拓展,加速资源变现能力,保持合理的内生增长。
海上风电方面:因施工难度等原因,相较于陆上风电,海上风电项目总体投资成本与单千瓦投资成本均更高。2021 年海上风电“抢装潮”退去后,风机大型化 趋势在海上风电方面体现的更为显著,伴随着整机厂商加码布局大兆瓦海风风 机,我们认为海风综合降本与增发效果有望在大兆瓦风机技术逐步成熟的过程中 逐步凸显,在 2021 年底国补退坡的情况下,加速沿海各省海上风电平价化进 程。此外,从海风装机结构层面来看,因沿海海上、海床施工条件以及产业链配 套装配能力的差异,我国沿海各省海上风电装机成本降低速度或存在不同,叠加 各省风速条件的不同,各省实现海上风电平价上网的节奏或将存在一定差异。
光伏:组件价格大幅反弹扰动项目收益率,中长期视角下预计降本增效延续
硅料涨价推高组件价格,影响电站收益率,中长期维度内降本增效势头延续。 国内光伏地面电站初始投资成本若不考虑配置储能系统,其成本主要由组件(占 比约 54%)、逆变器、支架、电缆、建安以及管理费用等构成。其中,建安费用 等非技术费用下降空间相对较低,整体投资成本降低空间主要由组件、逆变器等 技术成本贡献。中长期视角下,伴随光伏电池技术迭代进步和规模效应提高预计 带来组件整体利用效率提高与生产成本降低,光伏电站收益率有望出现提升。

我们对于国内新建地面集中式光伏电站进行项目全生命周期模拟,总体而言, 国内光伏电站收益率提高仍有待装机成本降低与利用效率提升推动。具体假设除利用小时、装机成本构成以外,其他假设与陆上风电项目相同:
利用小时数:项目全年利用小时数假设中枢为 1300 小时;
装机成本构成:除光伏组件以外的其他成本为 2000 元/千瓦,组件为可变成 本,光伏组件成本假设中枢约为 2000 元/千瓦(约合 2.0 元/瓦)。(报告来源:未来智库)
模型回溯:平价风电收益率不逊于补贴项目,光伏待组件降价释放盈利空间
新建项目收益质量显著提升的同时,风光平价电站与过往补贴时代项目相比出 现显著差异:1)风电——因装机成本大幅下降,度电成本降幅高于电价降幅, 新建平价电站收益率呈现出不逊于补贴时代的水平,且对于燃煤基准电价上网的 保障性消纳项目,其盈利水平大幅高于补贴时代末期“抢装潮”之下的新增项 目。因度电收入均由电网结算,其实际现金流改善幅度将高于利润提高幅度。
2)光伏——因 2021 年组件价格波动影响光伏投资成本,度电成本降幅小于电价降幅,平价电站收益率同比小幅下滑,仍待组件价格下降为光伏电站释放利润空 间。而平价电站现金流改善幅度类似于风电,盈利质量显著提高。

2.3、储能配置:风电收益率满足增配储能成本,光伏对于储能成本耐 受度较低
政策端对于电源侧配置储能逐步做出指引,部分省份要求新建平价项目增配储能系统。电源侧增配储能有助于缓解电网侧调峰调频压力,且推动新能源电站提 高对于自身出力曲线的预测精度。对于同一地区的平价电站而言,保障性并网项 目的储能配置要求通常低于市场化并网项目,在配套储能装机容量与储能时长两 方面均可得到体现,配置电站装机容量比例为约 15%左右的储能装机、储能容量 2-4 小时不等。
储能配置增大电源侧成本,类别大体包含抽水蓄能、电化学、氢储能等主要方式。以电化学储能为例,其成本大体包含四类:储能系统初始投资成本、维护成 本、充电成本、替换成本。因此,以储能系统全生命运营周期的角度看待储能系 统度电成本,其影响因素大体包含:1)储能系统 EPC 成本、2)充放电次数 (利用率)、3)放电深度(影响最大充电容量)、4)电池替换成本、5)外部购 电成本、6)维护成本。
风电装机成本大幅降低,当前时点储能配置将降低项目收益但依旧在平价开发范围内。光伏装机成本处于高位令其对于储能系统的成本耐受度较低。我们将 储能系统带入电站运营模型中,基础假设与前文平价风光电站收益率测算部分相同,并分别加入配套储能系统投资,储能系统相关假设包含:储能配置装机容量 为 15%、2 小时,单位储能投资成本为 1.50 元/瓦时,充放电深度为 80%,每年 充放电次数 360 次,储能用电 100%采用绿电电站自发电,储能系统每年维护成 本约 55 元/千瓦,替换成本约为 850 元/千瓦。基于此,我们进行了配套储能系统 的绿电电站收益率模拟。

3、宏观视角看绿电行业空间展望
3.1、新能源消纳改善分析:电网加速特高压建设,新能源装机重点向 负荷侧倾斜
资源区域错配与新能源发电自身特性共同导致新能源消纳问题。“十三五”中期 前,国内新能源消纳问题时有浮现,弃风弃光率总体维持高位,主要原因包含:
新能源优质资源禀赋与电力负荷中心错配——我国新能源优质资源禀赋分布多集中于三北地区(东北、西北、华北),该类地区自身电力消纳能力通常较差,而电力负荷中心主要位于我国中、东、南部地区,因此新能源装机重 点与电力负荷中心出现一定程度的错配;
风光发电出力不稳定,占比提升增大系统调峰调频负担——风电、光伏等新 能源发电具有随机性、波动性、难预测性等特点,日内出力峰谷特点较为鲜明,且出力波动性显著强于火电、水电等传统电源,而电力系统需要实时平 衡,因此风电、光伏等新能源进入电力系统比例增大的同时,对于灵活性电 源提供调峰调频的需求提升,这将令电力系统的输配电成本、保障系统安全 性的系统成本显著上行。

“十三五”电网基础投资总额大幅增长,装机重点向低弃风弃光地区转移。“十 三五”中期以来,新能源消纳问题显著改善,弃风、弃光率低位企稳,除多部委 接连出台《关于有序放开发用电计划的通知》、《关于实行可再生能源电力配额制 的通知》等政策推动各地电网加快火电灵活性改造步伐并且增多调峰调频服务以 保障新能源消纳外,特高压外送通道投产提速及新能源新增装机重点向中东南部 地区转移为重要推动因素。其中,外送通道建设主要解决三北地区等电力输出侧 地区的消纳问题,而新能源装机重点向中东南部地区转移则代表“十三五”时期 新能源发展向电力负荷区域的优质资源倾斜。