绿氢放量潜力多集中于三北地区,成本和规模具备发展优势。各地可再生资源条件的差异导致区域性绿氢发展分化,三北地区等区域可再生能源资源丰富,其低电价致使这些地区范围内的绿氢与传统制氢路径的成本差异较小,在多种应用场景具备经济性,也因而绿氢在三北地区以风光氢大基地形式率先进行示范与规模化应用。东部和中部地区资源相对匮乏,同时电力需求旺盛导致绿电溢价,海上风电成本尚处于准平价阶段,使得绿氢成本与传统制氢路径成本具备一定差距,因而规模化释放节奏滞后于三北地区,然而燃料电池汽车示范城市群均处沿海地带,部分地区给予电解水制氢谷电优惠电价,预计东部地区以分布式为主进行发展。
二、化工:氢气作为工业原料直接消纳,项目升级减碳将带动绿氢需求
2.1传统高碳排放工业新增产能受控,氢基绿色化工将成为产业转型重要突破口
推动能耗双控转向碳排放双控,高碳排放产业受控。我国逐步把碳排放总量纳入考虑,实施碳排放双控可以有效避免能源总量控制的局限性,在控制化石能源消费的同时鼓励可再生能源发展,并且给予地方政府更多的绿色空间。国家发改委发布的《产业结构调整指导目录(2023年本)》由鼓励、限制和淘汰三类目录组成,传统方式制备的工业合成氨、甲醇、炼化、冶金等被归类为限制或淘汰类,其新增产能将会受到限制。
产业结构转型背景下,传统化工工业绿色升级改造受到积极引导。目前国内化工工业行业仍属于以化石燃料为主要能源基础和原料的高耗能高碳排放行业,新型产业结构转型背景下,传统高耗能、高碳排放的项目新增产能将受到扩张限制。
《高耗能行业重点领域节能降碳改造升级实施指南(2022年版)》,针对炼油、煤化工、合成氨等化工行业出台了具体的实施指南,提出引导工艺和技术绿色化水平的升级改造、相关前沿技术加强攻关并加快淘汰不符合绿色低碳转型要求的落后设备和技术,相关政策为以可再生氢为基础的清洁化工产业发展奠定了发展基础。
氢基绿色化工将成为产业转型的重要突破口,绿氢需求先后受替代渗透和新增项目带动。氢气在化工领域被广泛运用为原料,随着环保、准入等政策的出台和实施,传统化工加清洁能源配套项目受到积极推广,氢基绿色化工将成为化工产业的重要转型方向。
绿氢在化工行业驱动力来自现有替代及新增需求两部分,包括既有传统工艺流程的绿氢替代和新型化工生产的绿氢利用两种模式。由于现代化工项目工艺复杂、投资大且周期长,绿氢作为原料在化工生产中的大规模利用需要进行较多产线的升级改造,短期内成本较高且风险较大,因此短期内绿氢将主要在既有传统工艺流程中发挥对传统化石能源制氢的替代作用,并在条件相对成熟的少部分绿氢新型化工项目中逐步开展试点应用。新型化工路径采取的工艺技术不同于现有传统生产路径,已有项目进行改造的难度大,因而仅适用于新建项目。
合成氨、甲醇的生产在中国以煤化工为主要路径,工厂大多采用煤气化制氢的传统方式获取氢气。石油炼化作为石油化工行业的主要生产环节,对氢气的需求量大,大型炼化厂几乎均有场内制氢设备,采取天然气重整或煤气化作为主要氢气供给方式。
2.2合成氨产能有望迎来逐步恢复,绿氢合成氨将率先实现规模化示范应用
合成氨供需趋紧,产能有望迎来逐步恢复。过去国内合成氨产能面临严重过剩问题,从统计数据看,2017年国内合成氨产能超过同年合成氨表观消费量约25.9%,十三五以来,工信部要求合成氨行业淘汰高碳排放的落后工艺缩减产能,从2016年到2022年国内合成氨产能下降近700万吨/年(2016年产能7156万吨)。受农业需求拉动,合成氨表观消费量与产量快速增长,供需态势缩紧。我国合成氨消费中农业消费量(尿素等氮肥)占到了总消费量的约七成,2018年起国内开始调整种植结构,农作物播种面积上涨、氮肥需求增加,根据国家统计局数据,2018年至2021年氮肥产量年均增长率达3.2%,合成氨表观消费量跟随上涨,年均增长8.6%。
合成氨制备过程需大量氢气,传统制备方式碳排放量高。氨是最基础的化工原料之一,在化工领域被广泛应用,作为工业上最基本、结构最简单的含氮原料,几乎所有的含氮化合物的最上游都源自于氨。氨可用于尿素等化肥农业原料(氮肥)、以及硝酸等化工用品生产,也可用作新型绿色燃料。工业上高温高压下氮气与氢气反应合成氨,传统的合成氨在生产氢气原料的过程中采用的是煤或者天然气制氢,生产过程中产生大量碳排放。根据中国气体工业协会数据,2020年我国合成氨行业二氧化碳的总排放量2.19亿吨,占到了化工行业排放总量的19.9%。
制氢环节是工业合成氨主要碳排放来源,电解水制氢可实现零碳排放。合成氨工业对氢气来源无特殊要求,可采用绿氢替代煤制氢与天然气制氢,替代煤制氢后减碳超2亿吨/年,实现除供热环节外的零碳排放。传统工业合成氨生产采用Harber—Bosch工艺,反应方程式为3H2+N2→2NH3,其中的N2来自空气分离,工艺简单,氢气来自煤制氢或天然气制氢,工艺较为复杂。煤制氢合成氨以及天然气制氢合成氨都是“留氢去碳”,碳排放较为严重,是合成氨工业主要的碳排放来源。
电解水制氢:反应方程式为:2H2O→2H2+O2。根据电解水制氢方程式,生产氢气不产生碳排放。煤制氢:反应方程式为:煤炭+02→CO+H2,CO+H2O→H2+CO2。煤制氢工厂平均每生产1吨氢气碳排放约25吨,仅从原料消耗角度看,煤制氢路线的合成氨碳排放约为4.2吨/吨氨,依据我国约6000万吨/年的合成氨产量、70%为煤制氨计算,煤制氨碳排放约2亿吨/年。天然气制氢:反应方程式为:CH4+02→CO2+2H2。根据天然气制氢方程式,生产1吨氢气约排放二氧化碳10吨,仅从原料消耗角度看,天然气制氢路线的合成氨碳排放约为2吨/吨氨。
绿氨规划已超800万吨,有望率先实现规模化示范,将带动百万吨氢气增量。根据当前绿氨各项目规划统计,规划量级已超800万吨,项目地点多集中于内蒙古、河北、甘肃、辽宁等地区,根据合成氨工艺流程,每吨合成氨需氢约0.18吨,800万吨绿氨规划对应约144万吨氢气增量。
2.3甲醇产能整合升级,绿色甲醇有望成为甲醇新增产能突破口
目前国内甲醇产业整体供过于求且各区域差异大,原料结构对煤炭的依赖度高,易受国外低成本甲醇的冲击。未来预计甲醇下游消费增长将以MTO/MTP(甲醇制烯烃)、甲醇燃料等新兴下游带动,政策引导下优胜劣汰产能整合升级以提高竞争力。
碳排放双控下,绿色甲醇有望成为甲醇新增产能突破口。考虑碳排放双控下煤制甲醇新项目难以获批,采用绿氢制备的绿色甲醇将成为未来增加甲醇产能的突破口,相关项目逐渐在西北、西南等地区开展,例如“液态阳光”等新型工艺示范项目。根据甲醇合成工艺流程,每吨绿色甲醇需氢约0.19吨,450万吨绿色甲醇规划对应约86万吨氢气增量。
船舶转型绿色燃料技术路线,带动甲醇新增需求。国际海事组织(IMO)公布的数据显示,船舶行业每年的碳排放量约为10.76亿吨,占全球二氧化碳排放总量的2.89%,并呈继续增加的趋势。近期,MEPC8会议、欧盟Fitfor55等计划加速推进航运领域脱碳进程,同时国际海运温室气体年度排放总量标准规划出台,规定2030/2040年较2008年至少降低20%/70%、力争降低30%/80%。脱碳目标将推动船舶向清洁能源转型,即LNG动力、甲醇动力、氨动力、氢动力等船舶在未来船舶新增的比例里将进一步提升。甲醇作为其中最受关注的可替代燃料之一,需求将受益于船舶绿色化转型带动。