Collaborative Network of Power Generation

发电企业协作网
  • 2024火电低碳化改造技术论坛暨环保、固废资源化综合利用交流研讨会
  • 全国热电节能减排新技术交流研讨会
  • 第八届全国热电产业年会暨清洁供热 技术交流研讨会
  • 热烈祝贺:“2024燃煤电厂安全环保提质增效技术交流研讨会”于2024年3月28-30日于广东江门成功召开
  • 热烈祝贺:“2024燃煤电厂安全环保提质增效技术交流研讨会”于2024年3月28-30日于广东江门成功召开

   要闻动态

氢能源行业专题报告:绿氢消纳及驱动力探讨

  2.4高端化、绿色化发展成为新趋势,绿氢炼化将成为石化工业碳中和的关键

  “十四五”期间,化工产品高端化、绿色化发展成为新趋势。目前炼厂加氢装置对氢气的需求主要靠重整氢,重整氢气是炼厂最重要的廉价氢气资源,重整的氢气产率为进料2.5%—3.5%,每吨进料可提供300—500Nm3副产氢,但原油中65—165℃馏分加上加氢裂化装置的石脑油,重整原料约占原油的15%,因此重整副产氢最多只占原油产量的0.5%,而全厂用氢量一般占原油的0.8%—1.4%。随着加氢装置的陆续建成,重整氢已不能满足对氢气日益增大的需求。炼化新工艺的发展意味着工艺环节的精细化,对加氢的数量和质量提出了更高的要求。随着大量炼化一体化园区的投产,预计在中短期内,炼化会成为氢气大规模应用的下游领域,根据中国石油经济研究院的数据,目前每年全国大约有6亿吨的原油加工量规模,对应的氢气需求量约为900万吨。

  绿氢炼化的标志性项目已投产:中石化6月30日新疆库车绿氢示范项目顺利产氢,产出的氢气通过管道输送到中国石化塔河炼化,替代现有天然气化石能源制氢。该项目实现了绿氢生产到利用全流程贯通,也标志着我国首次实现万吨级绿氢炼化项目全产业链贯通。

  石化工业减碳已成趋势,绿氢炼化将成为石化工业实现碳中和的必由之路。绿氢炼化已列入《“十四五”全国清洁生产推行方案》中,文件明确提出石化化工行业实施绿氢炼化降碳工程,炼厂绿氢渗透率将有望稳步提升。受到上游原料供应来源、工业基础以及下游消费市场等因素影响,目前炼厂的区域布局以东部沿海地区为主。

  随着“双碳”和相关行业政策的推进,石化产品市场总需求虽然增长显著度不高,但未来大型炼化一体化装置的投产仍然将增长部分产能,同时部分规模较小的独立炼厂将面临淘汰或兼并重组,炼厂总产量预计与目前水平持平。尽管目前炼油厂采用绿氢的成本高于化石燃料制氢的成本,但随着中国整体石化行业升级转型和愈发明确的政策信号,考虑产能替换减碳、重大项目落地和绿氢成本下降加速等因素,未来西南、西北、东北等地区炼厂绿氢渗透率将稳步提升。

  三、钢铁:行业开启绿色转型,碳税下绿氢成为脱碳关键原料及能源

  3.1钢铁行业脱碳难度高、体量大,政策引导下行业开启绿色升级

  钢铁行业脱碳难度高、体量大,是碳排放密集程度最高、脱碳压力最大的行业之一。碳排放约占全球排放总量的7.2%,钢铁行业的脱碳在国内尤为重要,目前,中国钢铁行业碳排放量约占中国碳排放总量的15%,是碳排放量最高的制造行业,全球每年生产和使用高达18亿吨钢铁,其中将近50%的钢产于中国内地,中国钢铁行业碳排放量也约占全球钢铁行业碳排放总量的50%。

  钢铁行业开启脱碳转型需求迫切,电气化难以实现完全脱碳。钢铁行业是我国工业的支柱性行业,约占我国GDP的5%,然而,目前我国钢铁行业仍以碳排放强度高的长流程为主,粗钢产能约占90%,在碳中和以及去产能的双重压力下,我国钢铁行业面临严峻挑战,钢铁行业的快速脱碳尤为重要。由于中国钢铁生产中用于提供高温的燃料燃烧造成的排放和以焦炭为主要还原剂的反应过程排放,因而难以通过电气化的方式实现完全脱碳。

  3.2绿氢成为钢铁行业脱碳关键原料及能源,碳税下绿氢渗透有望提速

  氢气具备高能量密度及热值,适用于钢铁行业减碳工程。在某些特定领域,能源需要拥有更高能量密度、更长期的储存周期或以燃料形式存在用来燃烧,即使用电需求不断高增,但在某些领域的需求,电是无法替代非电能源,例如金属冶炼、焦炉炼钢等。假设到2060年中国电气化率高达70%,对应仍然存在20-30亿吨标准煤的能源需完成脱碳,因此需其他能源形式以实现碳中和。氢气凭借其高能量密度和热值,适用于工业领域脱碳,其热值是汽油的3倍,酒精的3.9倍,天然气的5倍,焦炭的4.5倍。

  利用绿氢替代焦炭进行直接还原铁生产并配加电炉炼钢的模式将成为钢铁行业完全脱碳关键且具备前景的解决方案之一。基于氢气的直接还原技术是用氢替换碳作为炼铁还原剂,使炼铁工序中产生水而不是二氧化碳,从而大幅减少温室气体排放,被视为钢铁工业的绿色生产方法。掺烧绿氢供热也是钢铁生产领域脱碳的重要路径之一。由于钢铁生产中用于提供高温的燃料燃烧造成的排放难以通过电气化的方式实现完全脱碳,且能效提升和废钢利用等方式的减排潜力有限,因此利用将绿氢掺烧至原有供热能源中,例如煤掺氢燃烧,可推动钢铁领域碳排放的下降。

  氢气炼钢开启试点项目,项目产能累计规模达740万吨。钢铁行业对氢气的利用集中在新增产能的生产工艺流程,行业领先企业占据先发地位,近年来国内大型钢铁企业已经逐步开启了氢冶金技术工艺试点项目。以1吨钢使用55kg氢气测算,已宣布的740万吨氢冶金试点项目产能,对应将带动约40.7万吨氢气需求。

  钢铁领域氢气成本敏感度最高,碳税落地驱动绿氢渗透提速。钢铁领域对氢气成本敏感程度高,10元/kg左右氢气成本才可与原有焦炭炼钢成本持平,然而碳税的落地将抬高原有能源使用成本,从而推动氢气平价进程的加速。欧盟碳关税(CBAM)于2023年10月起开始运行,行业范围涵盖钢铁、铝、氢、水泥、化肥和电力。灰/蓝/绿氢生产1kg氢气产生CO2分别为25/11/0kg,根据炼铁时所需的焦炭和氢气量,以焦炭价格2500元/吨测算,在不考虑碳税的情况下,氢气成本为9.55元/kg时,采用焦炭炼铁和氢炼铁成本相当;以50欧元/吨的碳税价格测算,氢气平价的可接受成本将提升至为15元/kg,此时绿氢的制取成本对应电价为0.2元/kWh,并且低于灰氢加碳税的价格。由此可见,碳税是驱动绿氢需求的关键,将推进绿氢在钢铁领域的渗透应用加速。

  四、储能:风光消纳压力提升,大规模、长周期氢储能迎机遇

  4.1可再生能源大规模应用根本性问题在于消纳,以西北为代表的新能源消纳压力显现

  从新能源利用率看,西北外送电省份消纳压力突出。国家电网《新能源消纳运行评估及预警技术规范》设置了新能源消纳监测预警红/黄/绿色区域,进入红色预警的地区或面临暂停风光电接入的风险,主要判断指标为新能源利用率。从2021年-2023H1各省逐月利用率数据来看:

  区位上:利用率偏低区域主要集中在西北地区(内蒙古、甘肃、宁夏、青海、新疆等省份)。目前,西北地区第一批大型风光基地装机总容量97GW已全部开工建设,其中约50%电量外送消纳。预计通过提升已建输电通道利用效率共计可提升跨区域输电能力4200万千瓦,基本满足了第一批大基地的外送需求;第二批项目(规划“十四五”投产200GW)正在陆续开工,风光项目建设周期一般为6-12个月,原则上2023年并网,其中约75%电量外送消纳;第三批项目审查抓紧推进。随着第二、批风光项目投运,消纳问题将进一步突出。

  时间上:Q2为弃电高峰期。消纳问题最核心影响因素仍是终端用电需求,在迎峰度冬、迎峰度夏两个时间节点上用电需求旺盛可平抑短时供大于求的矛盾;此外,2Q22来水偏丰,同为“看天吃饭”的可再生能源类型、具有长期不可预测性,水电超发在一定程度上也影响到了风光消纳。

  新能源装机高增、本地电量富余为西北消纳问题突出主因。“源荷分离”规划下,西北新能源装机高增,目前青海、甘肃、宁夏、内蒙、新疆风光装机占电源总装机比例已超过35%,随着大基地建设推进,未来仍将成为风光装机快速渗透的主战场。

   通知公告

【编辑:叶先生